Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Wildl Dis ; 60(1): 52-63, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37889938

RESUMO

Brucellosis is a disease caused by the bacterium Brucella abortus that infects elk (Cervus canadensis) and cattle (Bos taurus). There is the potential for transmission from wildlife to livestock through contact with infected material shed during abortions or live births. To understand the impact of exposure on pregnancy rates we captured 30-100 elk per year from 2011 through 2020, testing their blood for serologic exposure to B. abortus. Predicted pregnancy rates for seropositive animals were 9.6% lower in prime-age (2.5-15.5 yr; 85%, 95% confidence interval [CI]: 74-91%) and 37.7% lower in old (>15.5 yr; 43%, 95% CI: 19-71%) elk as compared with seronegative animals. To understand the risk of seropositive elk shedding B. abortus bacteria and the effects of exposure on elk reproductive performance, we conducted a 5-yr longitudinal study monitoring 30 seropositive elk. We estimated the annual probability of a seropositive elk having an abortion as 0.06 (95% CI: 0.02-0.15). We detected B. abortus at three abortions and two live births, using a combination of culture and PCR testing. The predicted probability of a pregnant seropositive elk shedding B. abortus during an abortion or live birth was 0.08 (95% CI: 0.04-0.19). To understand what proportion of seropositive elk harbored live B. abortus bacteria in their tissues, we euthanized seropositive elk at the end of 5 yr of monitoring and sampled tissues for B. abortus. Assuming perfect detection, the predicted probability of a seropositive elk having B. abortus in at least one tissue was 0.18 (95% CI: 0.06-0.43). The transmission risk seropositive elk pose is mitigated by decreased pregnancy rates, low probability of abortion events, low probability of shedding at live birth events, and reasonably low probability of B. abortus in tissues.


Assuntos
Brucelose , Doenças dos Bovinos , Cervos , Gravidez , Feminino , Bovinos , Animais , Estudos Longitudinais , Anticorpos Antibacterianos , Brucelose/epidemiologia , Brucelose/veterinária , Brucelose/diagnóstico , Brucella abortus , Animais Selvagens , Cervos/microbiologia
2.
Science ; 378(6617): 300-303, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36264784

RESUMO

We know much about pathogen evolution and the emergence of new disease strains, but less about host resistance and how it is signaled to other individuals and subsequently maintained. The cline in frequency of black-coated wolves (Canis lupus) across North America is hypothesized to result from a relationship with canine distemper virus (CDV) outbreaks. We tested this hypothesis using cross-sectional data from wolf populations across North America that vary in the prevalence of CDV and the allele that makes coats black, longitudinal data from Yellowstone National Park, and modeling. We found that the frequency of CDV outbreaks generates fluctuating selection that results in heterozygote advantage that in turn affects the frequency of the black allele, optimal mating behavior, and black wolf cline across the continent.


Assuntos
Surtos de Doenças , Vírus da Cinomose Canina , Cinomose , Cor de Cabelo , Interações Hospedeiro-Patógeno , Preferência de Acasalamento Animal , Seleção Sexual , Lobos , Animais , Estudos Transversais , América do Norte , Lobos/genética , Lobos/virologia , Cinomose/epidemiologia , Cinomose/genética , Prevalência , Alelos , Interações Hospedeiro-Patógeno/genética , Cor de Cabelo/genética
3.
Transbound Emerg Dis ; 69(3): 927-942, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33756055

RESUMO

Sarcoptic mange, a skin infestation caused by the mite Sarcoptes scabiei, is an emerging disease for some species of wildlife, potentially jeopardizing their welfare and conservation. Sarcoptes scabiei has a near-global distribution facilitated by its forms of transmission and use of a large diversity of host species (many of those with broad geographic distribution). In this review, we synthesize the current knowledge concerning the geographic and host taxonomic distribution of mange in wildlife, the epidemiological connections between species, and the potential threat of sarcoptic mange for wildlife conservation. Recent sarcoptic mange outbreaks in wildlife appear to demonstrate ongoing geographic spread, increase in the number of hosts and increased virulence. Sarcoptic mange has been reported in at least 12 orders, 39 families and 148 species of domestic and wild mammals, making it one of the most generalist ectoparasites of mammals. Taxonomically, the orders with most species found infested so far include Perissodactyla (67% species from the entire order), Artiodactyla (47%), and Diprotodontia (67% from this order). This suggests that new species from these mammal orders are likely to suffer cross-species transmission and be reported positive to sarcoptic mange as surveillance improves. We propose a new agenda for the study of sarcoptic mange in wildlife, including the study of the global phylogeography of S. scabiei, linkages between ecological host traits and sarcoptic mange susceptibility, immunology of individuals and species, development of control strategies in wildlife outbreaks and the effects of global environmental change in the sarcoptic mange system. The ongoing transmission globally and sustained spread among areas and wildlife species make sarcoptic mange an emerging panzootic in wildlife. A better understanding of sarcoptic mange could illuminate the aspects of ecological and evolutionary drivers in cross-species transmission for many emerging diseases.


Assuntos
Escabiose , Animais , Animais Selvagens/parasitologia , Surtos de Doenças , Humanos , Mamíferos , Sarcoptes scabiei , Escabiose/epidemiologia , Escabiose/veterinária
4.
J Anim Ecol ; 90(5): 1264-1275, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33630313

RESUMO

Wildlife migrations provide important ecosystem services, but they are declining. Within the Greater Yellowstone Ecosystem (GYE), some elk Cervus canadensis herds are losing migratory tendencies, which may increase spatiotemporal overlap between elk and livestock (domestic bison Bison bison and cattle Bos taurus), potentially exacerbating pathogen transmission risk. We combined disease, movement, demographic and environmental data from eight elk herds in the GYE to examine the differential risk of brucellosis transmission (through aborted foetuses) from migrant and resident elk to livestock. For both migrants and residents, we found that transmission risk from elk to livestock occurred almost exclusively on private ranchlands as opposed to state or federal grazing allotments. Weather variability affected the estimated distribution of spillover risk from migrant elk to livestock, with a 7%-12% increase in migrant abortions on private ranchlands during years with heavier snowfall. In contrast, weather variability did not affect spillover risk from resident elk. Migrant elk were responsible for the majority (68%) of disease spillover risk to livestock because they occurred in greater numbers than resident elk. On a per-capita basis, however, our analyses suggested that resident elk disproportionately contributed to spillover risk. In five of seven herds, we estimated that the per-capita spillover risk was greater from residents than from migrants. Averaged across herds, an individual resident elk was 23% more likely than an individual migrant elk to abort on private ranchlands. Our results demonstrate links between migration behaviour, spillover risk and environmental variability, and highlight the utility of integrating models of pathogen transmission and host movement to generate new insights about the role of migration in disease spillover risk. Furthermore, they add to the accumulating body of evidence across taxa that suggests that migrants and residents should be considered separately during investigations of wildlife disease ecology. Finally, our findings have applied implications for elk and brucellosis in the GYE. They suggest that managers should prioritize actions that maintain spatial separation of elk and livestock on private ranchlands during years when snowpack persists into the risk period.


Assuntos
Brucelose , Doenças dos Bovinos , Cervos , Animais , Animais Selvagens , Brucella abortus , Bovinos , Ecossistema
5.
PLoS One ; 13(11): e0207780, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30475861

RESUMO

Respiratory disease caused by Mycoplasma ovipneumoniae and Pasteurellaceae poses a formidable challenge for bighorn sheep (Ovis canadensis) conservation. All-age epizootics can cause 10-90% mortality and are typically followed by multiple years of enzootic disease in lambs that hinders post-epizootic recovery of populations. The relative frequencies at which these epizootics are caused by the introduction of novel pathogens or expression of historic pathogens that have become resident in the populations is unknown. Our primary objectives were to determine how commonly the pathogens associated with respiratory disease are hosted by bighorn sheep populations and assess demographic characteristics of populations with respect to the presence of different pathogens. We sampled 22 bighorn sheep populations across Montana and Wyoming, USA for Mycoplasma ovipneumoniae and Pasteurellaceae and used data from management agencies to characterize the disease history and demographics of these populations. We tested for associations between lamb:ewe ratios and the presence of different respiratory pathogen species. All study populations hosted Pasteurellaceae and 17 (77%) hosted Mycoplasma ovipneumoniae. Average lamb:ewe ratios for individual populations where both Mycoplasma ovipneumoniae and Pasteurellaceae were detected ranged from 0.14 to 0.40. However, average lamb:ewe ratios were higher in populations where Mycoplasma ovipneumoniae was not detected (0.37, 95% CI: 0.27-0.51) than in populations where it was detected (0.25, 95% CI: 0.21-0.30). These findings suggest that respiratory pathogens are commonly hosted by bighorn sheep populations and often reduce recruitment rates; however ecological factors may interact with the pathogens to determine population-level effects. Elucidation of such factors could provide insights for management approaches that alleviate the effects of respiratory pathogens in bighorn sheep. Nevertheless, minimizing the introduction of novel pathogens from domestic sheep and goats remains imperative to bighorn sheep conservation.


Assuntos
Mycoplasma ovipneumoniae/isolamento & purificação , Pasteurellaceae/isolamento & purificação , Sistema Respiratório/microbiologia , Carneiro da Montanha/microbiologia , Animais , Conservação dos Recursos Naturais , Mycoplasma ovipneumoniae/fisiologia , Pasteurellaceae/fisiologia , Probabilidade
6.
Ecol Evol ; 8(17): 8726-8735, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30271540

RESUMO

Many parasites infect multiple hosts, but estimating the transmission across host species remains a key challenge in disease ecology. We investigated the within and across host species dynamics of canine distemper virus (CDV) in grizzly bears (Ursus arctos) and wolves (Canis lupus) of the Greater Yellowstone Ecosystem (GYE). We hypothesized that grizzly bears may be more likely to be exposed to CDV during outbreaks in the wolf population because grizzly bears often displace wolves while scavenging carcasses. We used serological data collected from 1984 to 2014 in conjunction with Bayesian state-space models to infer the temporal dynamics of CDV. These models accounted for the unknown timing of pathogen exposure, and we assessed how different testing thresholds and the potential for testing errors affected our conclusions. We identified three main CDV outbreaks (1999, 2005, and 2008) in wolves, which were more obvious when we used higher diagnostic thresholds to qualify as seropositive. There was some evidence for increased exposure rates in grizzly bears in 2005, but the magnitude of the wolf effect on bear exposures was poorly estimated and depended upon our prior distributions. Grizzly bears were exposed to CDV prior to wolf reintroduction and during time periods outside of known wolf outbreaks, thus wolves are only one of several potential routes for grizzly bear exposures. Our modeling approach accounts for several of the shortcomings of serological data and is applicable to many wildlife disease systems, but is most informative when testing intervals are short. CDV circulates in a wide range of carnivore species, but it remains unclear whether the disease persists locally within the GYE carnivore community or is periodically reintroduced from distant regions with larger host populations.

7.
Parasit Vectors ; 11(1): 449, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30075742

RESUMO

Sarcoptic mange is a globally distributed disease caused by the burrowing mite Sarcoptes scabiei, which also causes scabies in humans. A wide and increasing number of wild mammal species are reported to be susceptible to mange; however, the impacts of the disease in wildlife populations, mechanisms involved in its eco-epidemiological dynamics, and risks to public and ecosystem health are still unclear. Major gaps exist concerning S. scabiei host specificity and the mechanisms involved in the different presentations of the disease, which change between individuals and species. Immunological responses to the mite may have a relevant role explaining these different susceptibilities, as these affect the clinical signs, and consequently, the severity of the disease. Recently, some studies have suggested sarcoptic mange as an emerging threat for wildlife, based on several outbreaks with increased severity, geographical expansions, and novel wild hosts affected. Disease ecology experts convened for the "International Meeting on Sarcoptic Mange in Wildlife" on 4-5 June 2018, hosted by the Department of Fish and Wildlife Conservation at Virginia Tech in Blacksburg, Virginia, USA. The meeting had a structure of (i) pre-workshop review; (ii) presentation and discussions; and (iii) identification of priority research questions to understand sarcoptic mange in wildlife. The workgroup concluded that research priorities should be on determining the variation in modes of transmission for S. scabiei in wildlife, factors associated with the variation of disease severity among species, and long-terms effects of the mange in wildlife populations. In this note we summarize the main discussions and research gaps identified by the experts.


Assuntos
Animais Selvagens/parasitologia , Sarcoptes scabiei , Escabiose/veterinária , Animais , Pesquisa
8.
PLoS One ; 12(7): e0180689, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28708832

RESUMO

Respiratory disease has been a persistent problem for the recovery of bighorn sheep (Ovis canadensis), but has uncertain etiology. The disease has been attributed to several bacterial pathogens including Mycoplasma ovipneumoniae and Pasteurellaceae pathogens belonging to the Mannheimia, Bibersteinia, and Pasteurella genera. We estimated detection probability for these pathogens using protocols with diagnostic tests offered by a fee-for-service laboratory and not offered by a fee-for-service laboratory. We conducted 2861 diagnostic tests on swab samples collected from 476 bighorn sheep captured across Montana and Wyoming to gain inferences regarding detection probability, pathogen prevalence, and the power of different sampling methodologies to detect pathogens in bighorn sheep populations. Estimated detection probability using fee-for-service protocols was less than 0.50 for all Pasteurellaceae and 0.73 for Mycoplasma ovipneumoniae. Non-fee-for-service Pasteurellaceae protocols had higher detection probabilities, but no single protocol increased detection probability of all Pasteurellaceae pathogens to greater than 0.50. At least one protocol resulted in an estimated detection probability of 0.80 for each pathogen except Mannheimia haemolytica, for which the highest detection probability was 0.45. In general, the power to detect Pasteurellaceae pathogens at low prevalence in populations was low unless many animals were sampled or replicate samples were collected per animal. Imperfect detection also resulted in low precision when estimating prevalence for any pathogen. Low and variable detection probabilities for respiratory pathogens using live-sampling protocols may lead to inaccurate conclusions regarding pathogen community dynamics and causes of bighorn sheep respiratory disease epizootics. We recommend that agencies collect multiples samples per animal for Pasteurellaceae detection, and one sample for Mycoplasma ovipneumoniae detection from at least 30 individuals to reliably detect both Pasteurellaceae and Mycoplasma ovipneumoniae at the population-level. Availability of PCR diagnostic tests to wildlife management agencies would improve the ability to reliably detect Pasteurellaceae in bighorn sheep populations.


Assuntos
Infecções Respiratórias/diagnóstico , Doenças dos Ovinos/diagnóstico , Animais , DNA Bacteriano/metabolismo , Mycoplasma ovipneumoniae/genética , Mycoplasma ovipneumoniae/isolamento & purificação , Pasteurellaceae/genética , Pasteurellaceae/isolamento & purificação , Densidade Demográfica , Prevalência , Reação em Cadeia da Polimerase em Tempo Real , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/microbiologia , Ovinos , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/microbiologia , Carneiro da Montanha , Manejo de Espécimes
9.
Philos Trans R Soc Lond B Biol Sci ; 367(1604): 2840-51, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22966139

RESUMO

Wildlife reintroductions select or treat individuals for good health with the expectation that these individuals will fare better than infected animals. However, these individuals, new to their environment, may also be particularly susceptible to circulating infections and this may result in high morbidity and mortality, potentially jeopardizing the goals of recovery. Here, using the reintroduction of the grey wolf (Canis lupus) into Yellowstone National Park as a case study, we address the question of how parasites invade a reintroduced population and consider the impact of these invasions on population performance. We find that several viral parasites rapidly invaded the population inside the park, likely via spillover from resident canid species, and we contrast these with the slower invasion of sarcoptic mange, caused by the mite Sarcoptes scabiei. The spatio-temporal patterns of mange invasion were largely consistent with patterns of host connectivity and density, and we demonstrate that the area of highest resource quality, supporting the greatest density of wolves, is also the region that appears most susceptible to repeated disease invasion and parasite-induced declines. The success of wolf reintroduction appears not to have been jeopardized by infectious disease, but now shows signs of regulation or limitation modulated by parasites.


Assuntos
Monitoramento Epidemiológico/veterinária , Escabiose/parasitologia , Lobos/parasitologia , Lobos/virologia , Animais , Conservação dos Recursos Naturais/métodos , Cinomose/epidemiologia , Cinomose/transmissão , Cinomose/virologia , Vírus da Cinomose Canina/patogenicidade , Densidade Demográfica , Dinâmica Populacional , Prevalência , Sarcoptes scabiei/patogenicidade , Escabiose/epidemiologia , Escabiose/transmissão , Estudos Soroepidemiológicos , Fatores de Tempo , Wyoming/epidemiologia
10.
J Wildl Dis ; 48(2): 473-6, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22493125

RESUMO

Using real-time PCR, we tested 15 wolf (Canis lupus) feces from the Superior National Forest (SNF), Minnesota, USA, and 191 from Yellowstone National Park (YNP), USA, collected during summer and 13 during winter for canine parvovirus (CPV)-2 DNA. We also tested 20 dog feces for CPV-2 DNA. The PCR assay was 100% sensitive and specific with a minimum detection threshold of 10(4) 50% tissue culture infective dose. Virus was detected in two winter specimens but none of the summer specimens. We suggest applying the technique more broadly especially with winter feces.


Assuntos
Fezes/virologia , Parvovirus Canino/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Lobos , Animais , Animais Selvagens/virologia , DNA Viral/análise , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/normas , Reprodutibilidade dos Testes , Estações do Ano , Sensibilidade e Especificidade , Lobos/virologia
11.
PLoS One ; 6(5): e19896, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21603638

RESUMO

Chronic wasting disease (CWD) is a fatal disease of deer, elk, and moose transmitted through direct, animal-to-animal contact, and indirectly, via environmental contamination. Considerable attention has been paid to modeling direct transmission, but despite the fact that CWD prions can remain infectious in the environment for years, relatively little information exists about the potential effects of indirect transmission on CWD dynamics. In the present study, we use simulation models to demonstrate how indirect transmission and the duration of environmental prion persistence may affect epidemics of CWD and populations of North American deer. Existing data from Colorado, Wyoming, and Wisconsin's CWD epidemics were used to define plausible short-term outcomes and associated parameter spaces. Resulting long-term outcomes range from relatively low disease prevalence and limited host-population decline to host-population collapse and extinction. Our models suggest that disease prevalence and the severity of population decline is driven by the duration that prions remain infectious in the environment. Despite relatively low epidemic growth rates, the basic reproductive number, R(0), may be much larger than expected under the direct-transmission paradigm because the infectious period can vastly exceed the host's life span. High prion persistence is expected to lead to an increasing environmental pool of prions during the early phases (i.e. approximately during the first 50 years) of the epidemic. As a consequence, over this period of time, disease dynamics will become more heavily influenced by indirect transmission, which may explain some of the observed regional differences in age and sex-specific disease patterns. This suggests management interventions, such as culling or vaccination, will become increasingly less effective as CWD epidemics progress.


Assuntos
Cervos , Extinção Biológica , Dinâmica Populacional , Príons , Doença de Emaciação Crônica/transmissão , Animais , Animais Selvagens , Epidemias , Modelos Biológicos , Doença de Emaciação Crônica/epidemiologia
12.
Ecol Appl ; 20(7): 2058-74, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21049890

RESUMO

Canine distemper virus (CDV) is an acute, highly immunizing pathogen that should require high densities and large populations of hosts for long-term persistence, yet CDV persists among terrestrial carnivores with small, patchily distributed groups. We used CDV in the Greater Yellowstone ecosystem's (GYE) wolves (Canis lupus) and coyotes (Canis latrans) as a case study for exploring how metapopulation structure, host demographics, and multi-host transmission affect the critical community size and spatial scale required for CDV persistence. We illustrate how host spatial connectivity and demographic turnover interact to affect both local epidemic dynamics, such as the length and variation in inter-epidemic periods, and pathogen persistence using stochastic, spatially explicit susceptible-exposed-infectious-recovered simulation models. Given the apparent absence of other known persistence mechanisms (e.g., a carrier or environmental state, densely populated host, chronic infection, or a vector), we suggest that CDV requires either large spatial scales or multi-host transmission for persistence. Current GYE wolf populations are probably too small to support endemic CDV. Coyotes are a plausible reservoir host, but CDV would still require 50000-100000 individuals for moderate persistence (> 50% over 10 years), which would equate to an area of 1-3 times the size of the GYE (60000-200000 km2). Coyotes, and carnivores in general, are not uniformly distributed; therefore, this is probably a gross underestimate of the spatial scale of CDV persistence. However, the presence of a second competent host species can greatly increase the probability of long-term CDV persistence at much smaller spatial scales. Although no management of CDV is currently recommended for the GYE, wolf managers in the region should expect periodic but unpredictable CDV-related population declines as often as every 2-5 years. Awareness and monitoring of such outbreaks will allow corresponding adjustments in management activities such as regulated public harvest, creating a smooth transition to state wolf management and conservation after > 30 years of being protected by the Endangered Species Act.


Assuntos
Carnívoros , Surtos de Doenças/veterinária , Vírus da Cinomose Canina , Cinomose/epidemiologia , Animais , Cinomose/virologia , Ecossistema , Espécies em Perigo de Extinção , Modelos Biológicos , Densidade Demográfica , Processos Estocásticos
13.
PLoS One ; 4(9): e7042, 2009 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-19756151

RESUMO

BACKGROUND: Gray wolves (Canis lupus) were reintroduced into Yellowstone National Park (YNP) after a >70 year absence, and as part of recovery efforts, the population has been closely monitored. In 1999 and 2005, pup survival was significantly reduced, suggestive of disease outbreaks. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed sympatric wolf, coyote (Canis latrans), and red fox (Vulpes vulpes) serologic data from YNP, spanning 1991-2007, to identify long-term patterns of pathogen exposure, identify associated risk factors, and examine evidence for disease-induced mortality among wolves for which there were survival data. We found high, constant exposure to canine parvovirus (wolf seroprevalence: 100%; coyote: 94%), canine adenovirus-1 (wolf pups [0.5-0.9 yr]: 91%, adults [>or=1 yr]: 96%; coyote juveniles [0.5-1.5 yrs]: 18%, adults [>or=1.6 yrs]: 83%), and canine herpesvirus (wolf: 87%; coyote juveniles: 23%, young adults [1.6-4.9 yrs]: 51%, old adults [>or=5 yrs]: 87%) suggesting that these pathogens were enzootic within YNP wolves and coyotes. An average of 50% of wolves exhibited exposure to the protozoan parasite, Neospora caninum, although individuals' odds of exposure tended to increase with age and was temporally variable. Wolf, coyote, and fox exposure to canine distemper virus (CDV) was temporally variable, with evidence for distinct multi-host outbreaks in 1999 and 2005, and perhaps a smaller, isolated outbreak among wolves in the interior of YNP in 2002. The years of high wolf-pup mortality in 1999 and 2005 in the northern region of the park were correlated with peaks in CDV seroprevalence, suggesting that CDV contributed to the observed mortality. CONCLUSIONS/SIGNIFICANCE: Of the pathogens we examined, none appear to jeopardize the long-term population of canids in YNP. However, CDV appears capable of causing short-term population declines. Additional information on how and where CDV is maintained and the frequency with which future epizootics might be expected might be useful for future management of the Northern Rocky Mountain wolf population.


Assuntos
Infecções Bacterianas/veterinária , Viroses/veterinária , Adenovirus Caninos/imunologia , Animais , Infecções Bacterianas/epidemiologia , Reservatórios de Doenças , Vírus da Cinomose Canina/imunologia , Raposas , Herpesvirus Canídeo 1/imunologia , Neospora/imunologia , Parvovirus Canino/imunologia , Fatores de Risco , Especificidade da Espécie , Fatores de Tempo , Viroses/epidemiologia , Lobos , Wyoming
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA